Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compact optoelectronic oscillators using WGM modes on fused silica and MgF2 mini-disks resonators

Identifieur interne : 000124 ( Russie/Analysis ); précédent : 000123; suivant : 000125

Compact optoelectronic oscillators using WGM modes on fused silica and MgF2 mini-disks resonators

Auteurs : RBID : Pascal:11-0007528

Descripteurs français

English descriptors

Abstract

This study deals with a design, fabrication and characterization of compact optoelectronic oscillators (OEO). Resonator behaves as a sphere because energy is trapped in whispering-gallery-modes in the equatorial region. For this purpose, Fused-silica and MgF2 are suitable, due to their mechanical characteristics and their low attenuation at 1.55 μm wavelength. In fact, 6-7 degrees Mohs hardness of these materials allows us to obtain a quite easy precision-processing. Our prototype owns a quality factor of approximately 3×108, which is certainly limited by the available technology. Resonator is coupled to an optical fiber including a taper-waveguide-based on a nm-position resolution. Microwave carrier is generated by locking optical phase modulation to a free-spectral-range (FSR) resonator, which occurs in the X-band. Moreover, this carrier is detected by a standard low-noise InGaAs p-i-n telecom photodiode. Oscillator prototype is assembled on a 0.12 m2 optical breadboard. In principle, this surface can be reduced to those of the oscillator main parts (resonator, laser, photodiode, amplifier and optical modulator). Oscillator phase noise measured by a dual-delay-line instrument, which has been developed in Besançon, corresponds to -90 dBrad2/Hz at 10 kHz off carrier. According to this result, oscillator suffers from severe noise-limitations due to several reasons: the thermal coefficient of the resonator, the low power that the resonator can accept, and the small volume of the energy-confinement region in the resonator (≃2×1014 m3) but our oscillator is packaged in a small volume, contrarily to classic OEO based on an optical fiber of a few km.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0007528

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Compact optoelectronic oscillators using WGM modes on fused silica and MgF
<sub>2</sub>
mini-disks resonators</title>
<author>
<name sortKey="Salzenstein, P" uniqKey="Salzenstein P">P. Salzenstein</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Franche Comté Electronique Mécanique Thermique Optique - Sciences et Technologies (FEMTO-ST), Centre National de la Recherche Scientifique (CNRS) UMR 6174, 26 Chemin de l'épitaphe</s1>
<s2>25030 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Franche-Comté</region>
<settlement type="city">Besançon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Volyanskiy, K" uniqKey="Volyanskiy K">K. Volyanskiy</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Franche Comté Electronique Mécanique Thermique Optique - Sciences et Technologies (FEMTO-ST), Centre National de la Recherche Scientifique (CNRS) UMR 6174, 26 Chemin de l'épitaphe</s1>
<s2>25030 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Franche-Comté</region>
<settlement type="city">Besançon</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Dept. of Optical communications, State University of Aerocosmic and Instrumentration</s1>
<s2>Saint Petersburg</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Saint Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tavernier, H" uniqKey="Tavernier H">H. Tavernier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Franche Comté Electronique Mécanique Thermique Optique - Sciences et Technologies (FEMTO-ST), Centre National de la Recherche Scientifique (CNRS) UMR 6174, 26 Chemin de l'épitaphe</s1>
<s2>25030 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Franche-Comté</region>
<settlement type="city">Besançon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rubiola, E" uniqKey="Rubiola E">E. Rubiola</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Franche Comté Electronique Mécanique Thermique Optique - Sciences et Technologies (FEMTO-ST), Centre National de la Recherche Scientifique (CNRS) UMR 6174, 26 Chemin de l'épitaphe</s1>
<s2>25030 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Franche-Comté</region>
<settlement type="city">Besançon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Larger, L" uniqKey="Larger L">L. Larger</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Franche Comté Electronique Mécanique Thermique Optique - Sciences et Technologies (FEMTO-ST), Centre National de la Recherche Scientifique (CNRS) UMR 6174, 26 Chemin de l'épitaphe</s1>
<s2>25030 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Franche-Comté</region>
<settlement type="city">Besançon</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0007528</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0007528 INIST</idno>
<idno type="RBID">Pascal:11-0007528</idno>
<idno type="wicri:Area/Main/Corpus">003960</idno>
<idno type="wicri:Area/Main/Repository">004575</idno>
<idno type="wicri:Area/Russie/Extraction">000124</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cavity resonators</term>
<term>Delay lines</term>
<term>Gallium Arsenides</term>
<term>Indium Arsenides</term>
<term>Magnesium Fluorides</term>
<term>Micro-optics</term>
<term>Microwave radiation</term>
<term>Optical amplifier</term>
<term>Optical fibers</term>
<term>Optical modulation</term>
<term>Optical modulators</term>
<term>Optical oscillators</term>
<term>Optical waveguides</term>
<term>Phase modulation</term>
<term>Phase noise</term>
<term>Photodiodes</term>
<term>Ternary compounds</term>
<term>Whispering gallery mode</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mode galerie</term>
<term>Modulation optique</term>
<term>Modulation phase</term>
<term>Bruit phase</term>
<term>Résonateur cavité</term>
<term>Guide onde optique</term>
<term>Photodiode</term>
<term>Amplificateur optique</term>
<term>Modulateur optique</term>
<term>Ligne retard</term>
<term>Hyperfréquence</term>
<term>Fibre optique</term>
<term>Magnésium Fluorure</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Microoptique</term>
<term>Silice fusionnée</term>
<term>F Mg</term>
<term>As Ga In</term>
<term>MgF2</term>
<term>InGaAs</term>
<term>0130C</term>
<term>4279G</term>
<term>4260D</term>
<term>4279H</term>
<term>4279</term>
<term>Oscillateur optique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study deals with a design, fabrication and characterization of compact optoelectronic oscillators (OEO). Resonator behaves as a sphere because energy is trapped in whispering-gallery-modes in the equatorial region. For this purpose, Fused-silica and MgF
<sub>2</sub>
are suitable, due to their mechanical characteristics and their low attenuation at 1.55 μm wavelength. In fact, 6-7 degrees Mohs hardness of these materials allows us to obtain a quite easy precision-processing. Our prototype owns a quality factor of approximately 3×10
<sup>8</sup>
, which is certainly limited by the available technology. Resonator is coupled to an optical fiber including a taper-waveguide-based on a nm-position resolution. Microwave carrier is generated by locking optical phase modulation to a free-spectral-range (FSR) resonator, which occurs in the X-band. Moreover, this carrier is detected by a standard low-noise InGaAs p-i-n telecom photodiode. Oscillator prototype is assembled on a 0.12 m
<sup>2</sup>
optical breadboard. In principle, this surface can be reduced to those of the oscillator main parts (resonator, laser, photodiode, amplifier and optical modulator). Oscillator phase noise measured by a dual-delay-line instrument, which has been developed in Besançon, corresponds to -90 dBrad
<sup>2</sup>
/Hz at 10 kHz off carrier. According to this result, oscillator suffers from severe noise-limitations due to several reasons: the thermal coefficient of the resonator, the low power that the resonator can accept, and the small volume of the energy-confinement region in the resonator (≃2×10
<sup>14</sup>
m
<sup>3</sup>
) but our oscillator is packaged in a small volume, contrarily to classic OEO based on an optical fiber of a few km.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7716</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Compact optoelectronic oscillators using WGM modes on fused silica and MgF
<sub>2</sub>
mini-disks resonators</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Micro-optics 2010 : 12-16 April 2010, Brussels, Belgium</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SALZENSTEIN (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VOLYANSKIY (K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TAVERNIER (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RUBIOLA (E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LARGER (L.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>THIENPONT (Hugo)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Franche Comté Electronique Mécanique Thermique Optique - Sciences et Technologies (FEMTO-ST), Centre National de la Recherche Scientifique (CNRS) UMR 6174, 26 Chemin de l'épitaphe</s1>
<s2>25030 Besançon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Dept. of Optical communications, State University of Aerocosmic and Instrumentration</s1>
<s2>Saint Petersburg</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>B-PHOT--Brussels Photonics Team</s1>
<s3>BEL</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Comité belge d'optique</s1>
<s3>BEL</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>77162C.1-77162C.9</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>0-8194-8189-0</s0>
</fA26>
<fA26 i1="02">
<s0>978-0-8194-8189-4</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174704450670</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0007528</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study deals with a design, fabrication and characterization of compact optoelectronic oscillators (OEO). Resonator behaves as a sphere because energy is trapped in whispering-gallery-modes in the equatorial region. For this purpose, Fused-silica and MgF
<sub>2</sub>
are suitable, due to their mechanical characteristics and their low attenuation at 1.55 μm wavelength. In fact, 6-7 degrees Mohs hardness of these materials allows us to obtain a quite easy precision-processing. Our prototype owns a quality factor of approximately 3×10
<sup>8</sup>
, which is certainly limited by the available technology. Resonator is coupled to an optical fiber including a taper-waveguide-based on a nm-position resolution. Microwave carrier is generated by locking optical phase modulation to a free-spectral-range (FSR) resonator, which occurs in the X-band. Moreover, this carrier is detected by a standard low-noise InGaAs p-i-n telecom photodiode. Oscillator prototype is assembled on a 0.12 m
<sup>2</sup>
optical breadboard. In principle, this surface can be reduced to those of the oscillator main parts (resonator, laser, photodiode, amplifier and optical modulator). Oscillator phase noise measured by a dual-delay-line instrument, which has been developed in Besançon, corresponds to -90 dBrad
<sup>2</sup>
/Hz at 10 kHz off carrier. According to this result, oscillator suffers from severe noise-limitations due to several reasons: the thermal coefficient of the resonator, the low power that the resonator can accept, and the small volume of the energy-confinement region in the resonator (≃2×10
<sup>14</sup>
m
<sup>3</sup>
) but our oscillator is packaged in a small volume, contrarily to classic OEO based on an optical fiber of a few km.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B83</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B79G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B60D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mode galerie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Whispering gallery mode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Modulation optique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical modulation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Modulation phase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Phase modulation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Bruit phase</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Phase noise</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Résonateur cavité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Cavity resonators</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Guide onde optique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Optical waveguides</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photodiode</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photodiodes</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Amplificateur optique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Optical amplifier</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Amplificador óptico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Modulateur optique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Optical modulators</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Ligne retard</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Delay lines</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Hyperfréquence</s0>
<s5>37</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Microwave radiation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Fibre optique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Optical fibers</s0>
<s5>47</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Magnésium Fluorure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Magnesium Fluorides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>50</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>51</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Microoptique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Micro-optics</s0>
<s5>61</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Silice fusionnée</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>F Mg</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>MgF2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>4279G</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>4260D</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>4279H</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>4279</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Oscillateur optique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Optical oscillators</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>003</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Micro-optics</s1>
<s3>Brussels BEL</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000124 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000124 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0007528
   |texte=   Compact optoelectronic oscillators using WGM modes on fused silica and MgF2 mini-disks resonators
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024